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Semiconductor technology often employs thln ﬁlms deposited on crystal
surfaces, and in some cases these films can self-orgamze into band, ring or
spiral patterns during annealing. A simple theory 1is proposed which -
predicts the stability or 1nstab1l1ty of such films and, in the case of
instability, the band spacing, which depends upon bulk surface and
interfacial free energies. This information could be of use in self-assembly
techniques. In some cases, bands condense into particle arrays upon further
annealing, and a theoretical model is developed to predict the subsequent
evolution of circular band patterns by diffusion, which causes the regular.- |
disappearance of alternate bands. '

- Keywords: band patterns; thin films; Ostwald rlpenmg, rings; surface
- diffusion; nanoparticles |
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1. Introduction

Many semiconductor devices rely upon the deposition of a thin film upon a semi-
conductor substrate and the subsequent shaping of this film into patterned structures
using a ‘top down’ fabrication technique. Another approach that shows 1ncreasmg
promise 1s to have the film self-assemble 1nto the required pattern using a ‘bottom up’
technique. In the first case, it is essential that the shape of the film be stable over
time, while the second technique relies upon an inherent instability on the film to
- generate the desired pattern. There is therefore increasing interest in understandmg '
the mechanisms controlling stability and pattern growth in thin films.

The whole matter of pattern generation is, of course, significant in many areas of
physics and biology, as has been summarized by Levin and Segel [1]. Many different
physical processes can be involved and the resulting patterns may be either regular or
chaotic. Much of the underlying theory of pattern development in thin layers was
developed a long time ago by Cahn and Hilliard [2-4] who derived a compact
nonlinear equation to describe the time evolution of an unstable mixed system
separating into two components. In the case of regular rather than chaotic patterns,
one generally successful approach is to assume a possible pattern with adjustable
parameters and to calculate its development rate as a function of these parameters.
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‘The parameter set that gives the fastest initial growth rate 1s then likely to be the one
that finally emerges.

An example of such a system related to semiconductor devices is a recent study
-~ of the development of spiral patterns of gold nanoparticles on the surface of a
- gold-implanted silicon wafer when it is subsequently annealed [5,6]. The implanted

gold atoms are localized in a layer about 25 nm in thickness where they form an alloy

'_ with the silicon. If the 1mplanted wafer is then annealed for a time as short as 5seconds

at a temperature of 650°C, then a pattern of closely spaced bands with alternating high
-and low gold content begins to develop on the surface, a typical spacing being about

10 um. These bands are themselves generally organized into larger patterns so that

they form circles or spirals about particular points on the surface or sometimes

 less symmetrreal patterns As the annealing time is increased above about 100 seconds
‘at this temperature the gold-rich bands condense into arrays of particles up to about
1pm in diameter. As the annealing time is increased some of the bands begin to

~ disappear in an almost alternating sequence beginning near the pattern center.
‘Similar behavior has been observed with other metallic films on silicon.

The present paper produces a semi-quantitative theoretical explanation of the

. development of such band structures and the dependence of the band spacing upon

critical parameters such as film thickness and both surface and bulk free energies.
~ The second stage of the annealing development is then explored for the simplified

~ case of circular ring patterns, with particle nucleation followed by diffusive Ostwald

- ripening leading to a modification of the ring spacing around a central particle.

'Although no specific parameter values are investigated, the results indicate how the
relative values of the parameters must be chosen in order to achieve the contrasting
~ aims of a stable film or a film that will develop some form of self-assembled pattern.-

2 Formatmn of band patterns ,

As the s1rnplest case, consider a untform substrate upon which is a th1n ﬁlrn of blnary
alloy which has a melting point much lower than that of the substrate. When the film
is melted during annealing there is the possibility of a compositional instability.
developing if this lowers the free energy per unit area. To treat this simplest possible
case, let us examine the possibility that a layer with initial composition AB gradually
‘breaks into uniform bands of alternating compositions A and B under the influence
of some forcing function. If there is some particular separation for which the bands
develop most rapidly, then this is 11kely to be the domlnant 1nstab111ty that occurs and
1t will define the final pattern. ) - - .
Following the usual method for analysmg 1nstab111t1es suppose that there 18 an

' 1n1tlally 31nu501da1 perturbauon of the composition A1+CB1_C of the surfaee film of
the form '

¢=tanh(esinkx), (D)

where o 1s a numerical parameter that increases with time, thus quantifying the
~degree of compositional separation, x is a coordinate in the surface plane, and

~ k=2n/w where w is the repeat spacing of bands normal to the x-direction.

The hyperbolic tangent function ensures separation into pure bands of composition
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A and B as o— oo, while the approximation c¢~q sinkx 1s appropriate for
examination of the initial stages of pattern, development which control the final
outcome. In the case of circular patterns, it is appropriate to use a Bessel function
perturbation of the form c¢=tanh(aJo(kr)) or even the simpler c¢=cos kr, both of
~ which approximate parallel bands at large radius. The analy51s is then similar to that
for the simpler sinusoidal case but will not be examined in detail here.

This small perturbation (1) then leads to variation in three significant physical
properties of the layer. First, there will be a change in the average bulk free energy G
per unit area of the film. If Gap is the free energy per unit volume of the original
eutectic film, and G, and Gy the free energies of the two completely separated
phases, then we can assume the approximation

G(c):GAB+alc—|—agcz—l—a3c3 . S (2)

for the bulk free energy of the composition Ay B;_.. The fact that, in the present
case, AB is a eutectic so that Gagp is a minimum 1s not for the moment 1mportant
Applymg this expression to the cases ¢ ==1 then gives '

GA—I—GB
2

A small var1at10n ¢ away from the AB composition into two complementary phases
‘Ay.Bi_.and A,_.B;.. and summation of their separate free energies then leads to

cancellation of the odd terms in (2) and changes the free energy per unit area of film
by an amount '

ay = — GaB. (3)

aewzh(- PG ), @

where 4 is the film thickness.

Secondly there will be a change in the average free energy o per unit area of the

interface between the film and the substrate, together with that of the ﬁlm free

surface, of the form _
c* (op + OB | ' '
_ - LA . _ 0
o) 3 ( T AB) | | (3)

where the subscnpts have the same meamng as in (4) and terms 11near 1n ¢ cancel for
the same reason. - '

" The third contribution to the total free energy arises from the composition
gradient within the film. This question was examined in detail by Cahn and Hilliard
[2] and the conclusion, as expressed in their equation (2.14) and the following un-

numbered equation, is that the free energy per unit area of such a single comp031t1on
interface 1s glven by

o +00 | 4+w/2 o ST
= ZNK / (dc/dx)z_dx_ — 2Nk / (d'c/dx)zdx_ - (6)
J —00 | - —w/2 | |
where N is the number of atoms per unit volume, c is the relative concentration of
one of the phases which behaves as in (1), and « is a constant proportional to the
‘oradient energy’ of the composition transition. For a banded transition pattern a
good approximation for c(x) is that given by (1), and the free energy for a single band
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~ interface is then obtained by limiting the integral range to —u/2k < x < +7/2k, as
 shown to the right in (6), and multiplying by the film thickness /. The result for the
free energy o per unit length of internal film mterfaoe 1S then -

T oow - _

Note that th1s expressron sives the expected result 7 — olh/2w in the 11m1t a> 1, if the '
accurate expression (1) is used, implying complete phase separation. ,
The total free energy per unit area of film drlvmg the formatron of bands 18 thus

E=—-(0G+dc+1). - S ®)

This driving energy is distributed along a total band length 1/w per unit area of film,
giving a driving energy Ew per unit length of band so that the energy gradient, or
driving force, normal to the band edge 1s stmply proportional to E. Since the amount
of materral to be transported to unit length of an individual band is proporuonal to
wh|c|, the rate of generation of bands is

R h4+ X —Y— |
o= (mx-rp)
W = Gap — A‘2|‘ B’ X:G'AB_O-A_Q'I_G':E, Y = o. (10)

It is clear from (4)—(9) above that the initial state « =0 may be either stable or
metastable and that bands will form only if R > 0, which puts constraints upon the
physical parameters W, X and Y defined in (10). If R > 0 then the dominant band
pattern growth will be that for which R(w) is greatest. Applymg the condition
aR/ oW = 0 to Equation (9) then gives - : -

N .-_._2Yh . _ ' -
YEX T wh - ab

~ for the w1dth parameter of the most raprdly developmg band structure |

~ Since ‘the interface free energy Y between the separated bands is neoessarrly
positive, bands will develop only if X+ Wh > 0. There are then three possibilities,
which have been s1mply 111ustrated in Figure 1 with 4 measured in terms of ho=| X/ W]
and win terms of wo = |2Y/ W], which is generally much larger.

(a) If X > 0 so that substrate interface energy 1s a driving force, and W > 0 so
that the separated phases are stable relative to the initial mixed phase, then
- the band separation w is proportional to the film thickness % for thin films
but reaches a maximum value of 2Y/W for very thick layers as shown in

~ curve (a) of Figure 1. | o -
~(b) f X>0 but W<0 so that surface energy is the drlvmg foree and the
~separated A and B phases are less stable than the original AB phase, then w is
- proportional to the film thickness 4 for very thin films but increases to
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Figure 1. Variation of band separation w ) with film thlckness h for the three posmble sign
combinations of the parameters X and W defined in (10): (@) X > 0, W >0, (b) X > 0, W < 0,
(e) X < 0, W > 0. Parameters are normalized in terms of sy = |X /WI and wy= |2Y/ Wy, wh1ch
is generally much larger. |

1nﬁn1ty for h=—X/W so that no bands develop in ﬁlms thlcker than th1s as
- shown 1n curve (b). ' | - -

(¢) If X <0 and W > 0 so that bulk free energy is the driving force then no
* bands develop for & < —X/W but bands do develop in thicker films and these

- reach a 11m1t1ng separatlon —2 Y/ W for very thick layers as shown in
- curve (c) '

(d) If X < 0 and w<0 then no bands develop

3 Formatlon of cn'cular and spiral patterns

While a uniform pattern of straight bands is simplest to model, it 1s not a situation
that normally occurs to any good approximation. Instead bands usually form spiral
patterns which then interact with one another to produce ‘swirling’ structures |J].
It is interesting to see how these patterns might be produced, though it should be
noted that away from the pattern center the structure is well approxmlated by simple
parallel bands. _ -

Instead of investigating the development of a sinusoidal parallel “band pattern,
the obvious trial function in this case is a Bessel function Jo(kr) which appropriately
satisfies the equation V¢ +k*c=0 in plane polar coordinates, in analogy with the
use of sin(kx) as the solution of 8c/dx*+k’c=0 for the development of parallel
bands. At large radial distances Jo(kr) ~ [2/(Jrkr)]1/ > cos(kr — m/4) so that we might
expect the band separation to be similar to that predicted above for the linear case,
but interest concentrates on behavior near the origin where Jo— 1. Even here things
are fairly straightforward, for the maxima and minima of Jo(kr) follow a nearly
equally spaced sequence except that the initial circle centered at r=0 has a radius
r =2.4/k which is rather greater than the half width 1.6/k of the next band, though
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the imtegrated value of Jy(kr) over the band is almost the same. This largerfcentral_
area should show up in the resulting ring pattern, as indeed it does [5]. ' _
The fact that circular patterns are hardly ever observed, but only spirals, is

~ interesting and appears to have a subtle explanation. The development of either

‘circular or spiral patterns requires the presence of some irregularity, or at least a
random nucleation point, to define the center of the pattern. In practice this
- irregularity may be in the shape of a nanoparticle depOS1ted during the initial
processing or may be the location of surrounding band patterns. If the pattern is

centered on some such irregularity that is not pertectly circular, then growth of bands
may be expected to begin at some point near the nucleus and to proceed in a nearly

~ circular manner around it but, because of the lack of exact circular symmetry, the

two ends of the growing band will approach each other from positions at shghtly |
different distances from the pattern center. Because of ditfusive flow to the growing -

band ends they will effectively repel each other, so that one is directed inwards

towards the center and the other outwards, initiating a splral pattern. An explanatlon

similar to this has been applied to some of the pattern developments in Llesegang
tings by Krug and Brandtstadter 17]. - -

4. Comparlson with experiment N

Predlctlons for band development in real systems can in principle be obtamed from
(11) by inserting numerical values for the free energy parameters W, X, Y and the]"f -

film thickness 4. Unfortunately, such physical quantities are not easy to determine
and are not generally available in the literature, but some estimates can be made. The -
bulk free energies G in the definition of W are typically of order 10% J/m> while the
- surface free energies o in the definition of X and Y are typically of order 10 J/m?.
If the fractional difference of these quantities for the mixed material AB from the
“average of the quantity for A and B separately is the same in each case, then this
suggests that X/W~10"" m and Y/W~10"° m. The transition point at h=1 1n
Figure 1 is therefore expected to occur at a film thickness of order 2Y/W~2um.

The experiments of Venkatachalam et a,l [5] used films prepared by -a-lmplantmg

gold into a silicon substrate. The implanted gold dose was about 1-4 x 10° m ™2 and
this was localized in a surface layer about 20 nm in thickness, giving an alloy of about
30— 80% gold in silicon. The implant dose for the specnnens studied 1n detail gave a

gold fractlon of 58% which is not too far from the AB alloy assumed in our

caleulanons The resultmg ring separation in the initial stages of annealing was about
Sum, so that w/h~250. This is significantly larger than the order-of-magnitude

- pred1ct1on wih=2 Y/X ~ 20 derived from the analysis, but this predicted value is itself

“based on order-of-magnitude estlmates of the free energy ratios involved and so is
very uncertain, so that the agreement between theory and experiment is as good as
can be expected. From the discussion in the previous paragraph, the critical point
h=1 corresponds to-a film thickness of about 2 um, so that the experimental results
are for the reglon near. h 0 01 in Figure 1 and either of the alternatlves (a) or (b)
1n1ght apply. __ S -. ' : : ' B
Unfortunately, the experlmental data 1S conﬁned to 1mplants w1th the same

- extraction potential of 10 keV, so that the thickness of the deposited .gold film was o
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not changed. It was found that ring patterns appeared over only a limited range of
implant times and thus of gold concentrations, which is to be expected because too
little or too much gold will move the composition away from the assumed AB value
and decrease the driving energies X and Y, which must be generalized from (10) to
allow for the different A/B ratio. The conclusion from the limited available
experimental data is therefore that the theory provides a reasonable approximation
to the observed data, given the extent of the unknown quantities involved, but that
more extensive experiments are required to distinguish between the alternatives (a)
and (b) of Figure 1. o S . . .

- On a larger scale, the analysis leading to Figure 1 can be applied to many other
cases in which thicker layers are deposited on substrates and subsequently
decompose into bands. The critical point A=1 on the diagram, as noted above,
could be reached with films of order just a few micrometres in thickness, and thus
applies in many practical cases.

S. Ostwald ripe_.n-inlg of the rings

Once the surface film has separated into bands, rings, or more complex structures as
described above, several alternative developments are possible. In the simplest case,
nothing more happens except that the bands develop well-defined edges, as described
by the tanh function of (1) for large . In other cases, such as that studied by
Venkatachalam et al. [5,6], the bands of major composition A, silicon in this case,
may be compatible with the substrate while those of major composition B, gold in
this case, are not. During the annealing process the B-rich bands condense into
arrays of particles, the spacing between these particles being almost uniform rather
than random. This occurs through a process of either homogeneous nucleation or of
heterogeneous nucleation on the uniform substrate surface, the physics of each
process being well known [8,9] and summarized in a more recent publication [10].
The nucleation rate Ry for these particles is a very strong function of the saturation
ratio § = c/cqo, Vvarying as | o .

Rx = Kexp[—y/(Ins)2], - (12)

where K is a very large number and y is another constant. When one particle is
nucleated, the diffusion depletion field established around it ensures that no other
particle will nucleate in its immediate vicinity. This also ensures that all the particles
in the rings have very similar sizes and are nearly equally spaced. Details of this
nucleation process need not concern us here. '

In the case of surface layers that have developed a ring or spiral structure, there is
usually, however, something different about the particles in the circle around the
origin — the first positive segment of the Bessel function Jy(kr) — making them rather
larger than the other particles, or there may even be a single large particle at the
center of this cluster responsible for its circular shape. The interest now is to compute
how this set of particle rings develops during the annealing process. o

- For simplicity we consider the case where there is a single larger particle at
the origin, but this could be replaced by a disc-like array of larger-than-average
- particles as might arise from occurrence of the Bessel-function initial perturbation.
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Let » be the radial coordinate centered on the larger particle at the origin, then the |

properties and behavior of particles within a given ring are taken to all be the same,
each particle in the ring having radius a(r, 1) at time ¢. R
- First we need to calculate the solute concentration near a partrcle of radlus

Let the equilibrium solute concentration on the substrate surface at the temperature i

of interest be ¢, and suppose the equilibrium surface concentration close to a
- particle of radius a is ¢,. The particle shape may be complex but we take it to be a
simple spherical dome, details of the geometry being determined by the contact angle
~on the substrate and thus by the surface and interfacial free energies involved. S1nce
the total free energy of the particle has a volume component that varies as a and.- |

surface component that varies as a°, it can be shown [l()] that - o

. : cmeﬁ/ | - . (13)

where B is a calculable numerical parameter proportional to’ surface free energy Th1s -

is a version of the class1cal Gibbs—-Thomson formula. ' S :
If the angular variation of solute concentration c¢ is assumed to be zero, as in the

simple models discussed here, then the steady-state diffusion equation for free space

in two dimensions has the form V*¢c=0, which becomes rdc/or = P where r is the

radial coordinate and P 1s a constant. The diffusion field between r1ngs rl and ra then -

has the form o .

where Q 1S another constant and Fo 18 the r1ng closest to r; that strll has a NoN-zZero
particle size. Both positive and negative values of r, — r; must be considered, and the
_'calculat1ons for these two cases do not interfere since the two domains are separated
by the ring at r1. Matching this result to the equilibrium solute concentratrons c(rl) _
and c(rz) at rlngs r1 and ry as given by (13) then g1ves - . '

e(r2) — C(f’r)

a6

P =
Inr 2 — 11’1 r1
PRECLIEHELE
- Inry ~Inr .
The diffusion flow in the fllm towards the smaller of the_ two rings '-'iSI'therefore

where D is the diffusion coefficient of the solute atoms. The rate at Wthh the total
gold content C of the r rrng changes is then o L .

dC
dr

where P_ 1s the value of P evaluated from (15) for the ne1ghbor1ng larger rrng-f

'""2”D(P+““P—) ' (18) '

that still exists, and P_ is the value of P for the neighboring smaller ring. Note that .

dC/dt may be either positive or negative, corresponding to 1nward or outward radial =
diffusion on the substrate surface. o o L
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- Suppose each ring contains v particles per unit area, so that the ring at position
contains wrwv partlcles each of radius a. Equation (18) 1S then equlvalent to the
Statement . - . .

da uD
dr © m2wv

(P --P_), | - (19)

where u is a numerlcal parameter of order un1ty, the value of Wthh depends upon
the particle shape, and thus upon the contact angle of the particle material on the
substrate. If there 1s ]ust a single larger partlcle at the origin then there is an anomaly,
since 1ts nominal ring radlus is zero and P_=0. The appropriate approximation is
- therefore to set r=ay for this particle and to update this for each time step in the
numerical integration process The parameter D simply spe01ﬁes the overall rate of
the diffusion process. .
Equations (13), (15) and (19), together with initial conditions on particle size in
the rings and at the origin now provide a sufficient basis for numerical calculation of
the evolution of the particle sizes in the rings spanning the field. The first thing to
happen is that the innermost ring #1 loses content by diffusion to the central particle.
- This causes the particles in the ring to become smaller in size, which i increases their
equﬂ1br1um solute concentration and causes them to lose material ever more rapidly.
Because, however the particles in the next ring #2 are shielded by ring #1, they
- increase in size by d1ffus10n from the particles in ring #1. This increase in part1cle S1Z¢

. also means: that the ring #2 particles are larger than those in ring #3, so that they

grow a l1tt1e_ more at the expense of this ring as well. This process propagates thr_ough
~ the ring system, though with its effect decreasing with increasing radial distance, and
leads to the progressive vanishing of alternate rings, with the process being more
rapid for rings near the origin than for distant rings which are more stable.

- While an analytical solution for even a finite number of rings is almost
| 1mposs1ble a numerical simulation of this process is straightforward, since over the
small time interval of each step the particle size in each ring can be taken as constant,
the rate of change calculated, and all the particle sizes updated after each step. The
result of such a numerical calculation is given in Figure 2, which plots the evolution
of particle size with time for a ring system with a single larger particle, initially with
twice the radius of the other particles, at the origin. The other parameter values were
N aO_O 4, az-—-O 2fori>1, co=0.01, = 0.1 and D=1/2x.

6. Comparlson with experiment

This predicted behavior is seen in Figure 5c of the paper by Venkatachalam et al. [5]
and shows all the features predicted by this analysis, particularly the progressive
vanishing of bands near the center of the pattern, where there is a large particle that
has presumably initiated ring formation. This figure also shows that the particles in
the inner rings have grown in size relative to those in the outer rings, as predicted ; n
our analysis. Figure 5b of that paper shows the way in which rings or spirals growing
around different particles interact by competitive diffusion. This 1s, however, clearly
a complicated process to analyse. ' “
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Figure 2. Calculated evolution of particle size in initially uniform rings as a function of time
and distance from a larger particle at the origin. The particle at the origin, on the left in the
figure, was 1nitially twice the radius of the other particles, and its steadily increasing radius is
plotted at the left of the figure. The particles in the rings either disappear or else increase in
radius with annealing time.

7. Conclusions

The development of patterns of bands, spirals, and even more complex structures,
during the annealing of thin metastable alloy films deposited on planar surfaces has
been shown to arise from the existence of many possible instabilities, one of which
becomes dominant because 1t develops most rapidly 1n 1ts early stages. The resulting
patterns will always have complex structures because simple patterns begin to
develop nearly simultaneously in many locations on the film and the interaction of
these patterns causes complex deviations from simple geometries.

The theory set out above i1s admittedly only semi-quantitative, but this has
advantages as well as disadvantages. While the theory does not yet provide any
precise numerical predictions for some specific system that can be checked
experimentally, the advantage 1s that i1t describes a broad range of systems and
shows how the observed outcomes can be explained at least qualitatively, and
perhaps semi-quantitatively, in terms of a small number of physical parameters with
clear meanings, such as layer thickness and interface free energy. The predictions of
the theory may therefore prove of assistance in devising experiments that give greater
insight into this interesting field, and ultimately for complex semiconductor device
fabrication techniques.
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